Specular Reflection
 Lecture 17

Robb T. Koether
Hampden-Sydney College

Fri, Oct 4, 2019

Outline

(1) Specular Reflection
(2) The Specular Calculations

- The Phong Lighting Model
- The Blinn Lighting Model
(3) Assignment

Outline

(9) Specular Reflection
(2) The Specular Calculations

- The Phong Lighting Model
- The Blinn Lighting Model
(3) Assignment

Specular Reflection

- Specular reflection is different.
- The specular reflection represents the "shininess" of the surface.
- Thus, the color of the specular reflection is typically the color of the light source (which is usually white).

Specular Reflection

Specular Reflection

```
vec3 specular(1.0f, 1.0f, 1.0f);
GLuint spec_loc = glGetUniformLocation(program, "specular");
glUniform3fv(spec_loc, 1, specular);
GLfloat shiny = 20.0f;
GLuint shiny_loc = glGetUniformLocation(program, "shiny");
glUniformlf(shiny_loc, 1, shiny);
```

- We pass the specular light and the "shininess" as uniform variables the shaders.
- Note that shiny is a float, not a vec3.

Outline

(1) Specular Reflection

(2) The Specular Calculations

- The Phong Lighting Model
- The Blinn Lighting Model
(3) Assignment

Specular Reflection

- Specular reflections takes into account
- The specular light (intensity of reflection)
- The shininess of the material (narrowness of reflection)
- Orientation of the surface (normal vector \mathbf{N})
- Direction of the light source (light vector L)
- Direction of the viewer (view vector V)

Outline

(1) Specular Reflection

(2) The Specular Calculations

- The Phong Lighting Model
- The Blinn Lighting Model
(3) Assignment

Blinn and Phong Lighting

- There are two standard lighting models for specular reflection.
- Phong lighting model
- Blinn lighting model
- The Phong model is more intuitive, but the Blinn model is more efficient.
- The results are very similar, but not identical.

Phong Lighting Model

- In the Phong model, the intensity of the reflection is a function of the angle between direction \mathbf{V} to the viewer and the ideal direction \mathbf{R} of reflection from the light source off the surface.

Phong Lighting Model

Phong Lighting Model

- To compute \mathbf{R}, note that $\mathbf{R}+\mathbf{L}$ equals twice the projection of \mathbf{L} onto \mathbf{N}.

Phong Lighting Model

- The projection of \mathbf{L} onto \mathbf{N} is

$$
\left(\frac{\mathbf{L} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}}\right) \mathbf{N}=(\mathbf{L} \cdot \mathbf{N}) \mathbf{N} .
$$

- Therefore,

$$
\mathbf{R}+\mathbf{L}=2(\mathbf{L} \cdot \mathbf{N}) \mathbf{N}
$$

SO

$$
\mathbf{R}=-\mathbf{L}+2(\mathbf{L} \cdot \mathbf{N}) \mathbf{N}
$$

Computing Specular Reflection

- According to the Phong lighting model, the specular reflection is proportional to the cosine of the angle between \mathbf{V} and \mathbf{R}, raised to the α power, where α is a positive number.
- This is calculated as

$$
(\cos \varphi)^{\alpha}=(\mathbf{R} \cdot \mathbf{V})^{\alpha} .
$$

- The larger α, the narrower the cone of reflection.

Computing Specular Reflection

- According to the Phong lighting model, the specular reflection is proportional to the cosine of the angle between \mathbf{V} and \mathbf{R}, raised to the α power, where α is a positive number.
- This is calculated as

$$
(\cos \varphi)^{\alpha}=(\mathbf{R} \cdot \mathbf{V})^{\alpha}
$$

- The larger α, the narrower the cone of reflection.
- α is called the shininess.

Computing Specular Reflection

- Two other factors are
- Intensity of the incident light spec.
- Material specular property of the surface mat_spec.
- Therefore, the formula for specular reflection is

$$
\text { spec_refl }=\text { specular } * \max ((\mathbf{R} \cdot \mathbf{V}), 0)^{\alpha} .
$$

Outline

(9) Specular Reflection

(2) The Specular Calculations

- The Phong Lighting Model
- The Blinn Lighting Model
(3) Assignment

Blinn Lighting Model

- The Blinn model is more efficient.
- Let \mathbf{H} be the halfway vector, which is the unit vector halfway between \mathbf{L} and \mathbf{V}.
- Then use $\mathbf{H} \cdot \mathbf{N}$ instead of $\mathbf{R} \cdot \mathbf{V}$.

$$
\text { spec_refl }=\text { specular } * \max ((\mathbf{H} \cdot \mathbf{N}), 0)^{\alpha} .
$$

Blinn Lighting Model

Blinn Lighting Model

- \mathbf{H} is computed as

$$
\mathbf{H}=\frac{\mathbf{L}+\mathbf{V}}{|\mathbf{L}+\mathbf{V}|}
$$

- How does $\mathbf{H} \cdot \mathbf{N}$ compare to $\mathbf{L} \cdot \mathbf{V}$?
- If \mathbf{L}, \mathbf{N}, and \mathbf{V} are coplanar, then the angle between \mathbf{H} and \mathbf{N} is half of the angle between \mathbf{R} and \mathbf{V}.
- Pretty much the same results can be obtained by adjusting α.

Blinn Lighting Model

- Why is Blinn lighting more efficient?
- The calculation of \mathbf{H} uses \mathbf{L} and \mathbf{V}, but not \mathbf{N}.
- Therefore, if the light source is directional and the viewer is "at infinity," then the halfway vector may be computed only once for the entire scene, not once for every vertex.
- The halfway vector would be passed as a uniform variable.

Blinn Lighting Model

- Why is Blinn lighting more efficient?
- The calculation of \mathbf{H} uses \mathbf{L} and \mathbf{V}, but not \mathbf{N}.
- Therefore, if the light source is directional and the viewer is "at infinity," then the halfway vector may be computed only once for the entire scene, not once for every vertex.
- The halfway vector would be passed as a uniform variable.
- In other situations, the two methods are about equally efficient.

Outline

(1) Specular Reflection

(2) The Specular Calculations
 - The Phong Lighting Model
 - The Blinn Lighting Model

(3) Assignment

Assignment

Assignment

- Assignment 16.
- Read pp. 376-387: Fragment Shaders for Different Light Styles.
- Read pp. 387-390: Moving Calculations to the Vertex Shader.

